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Offline Reinforcement Learning

Pessimism is the key for offline RL

I Constraining Policy (He and Hou, 2020;
Fujimoto et al., 2019)

I Penalizing Uncertainty (Kumar et al., 2020;
Wu et al., 2021; Yu et al., 2021)

Is there a simpler solution?
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Hao Hu*, Yiqin Yang*, Qianchuan Zhao, Chongjie Zhang

Observation:

I A lower discount factor can boost offline RL performance

Question:

I Is discount factor a proper way for pessimism? What affects the effectiveness of
a lower guidance discount factor?

Analysis:

I Regularization Effect

I Pessimistic Effect
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Linear MDPs

We say an episodic MDP (S,A, H,P, r) is a linear MDP with a known feature map

φ : S ×A → Rd if there exist d (unknown) measures µh = (µ
(1)
h , . . . , µ

(d)
h ) over S

and an unknown vector θh ∈ Rd such that

Ph(x′ |x, a) = 〈φ(x, a), µh(x′)〉, E
[
rh(sh, ah)

∣∣ sh = x, ah = a
]

= 〈φ(x, a), θh〉 (1)

for all (x, a, x′) ∈ S ×A× S at each step h ∈ [H].

I Tabular MDPs is a special case of linear MDPs.

I The condition above implies Q-function is linear.
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Regularization Effect

I In online RL, use a smaller discount factor
can be benificial (Jiang et al., 2015)

I Why? Does it applies to offline RL settings?
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Regularization Effect

Lemma (Jiang et al. (2015))

For any MDP M with rewards in [0, rmax],
∀π : S ×A → R and γ ≤ γe,

VM,γ(π) ≤ VM,γe(π)

≤ VM,γ(π) +
γe − γ

(1− γ)(1− γe)
rmax,

where γe is the evaluation discount factor.

6



Pessimistic Value Iteration

Algorithm 1 Pessimistic Value Iteration

1: Require: Dataset D = {(sτ , aτ , rτ )}Tτ=1.

2: Initialization: Set V̂ (·)← 0 and construct Γ(·, ·).
3: while not converged do
4: Construct (B̂γ V̂ )(·, ·)
5: Set Q̂(·, ·)← (B̂γ V̂ )(·, ·)− Γ(·, ·).
6: Set π̂(· | ·)← arg maxπ Eπ

[
Q̂(·, ·)

]
.

7: Set V̂ (·)← Eπ̂
[
Q̂(·, ·)

]
.

8: end while
9: Return π̂
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Regularization Effect

Lemma (PAC Guarantee in Discount Setting)

Suppose there exists an absolute constant c† > 0 such that with probability 1− ξ/2,

c† ·
N∑
τ=1

φ(sτ , aτ )φ(sτ , aτ )> � N · Eπ∗
[
φ(st, at)φ(st, at)

> ∣∣ s0 = s
]
,

for all s ∈ S. We set
λ = 1, β = c · dVmax

√
ζ, ζ = log (4dN/(1− γ)ξ),

where Vmax = rmax/(1− γ). Then with probability 1− ξ, the policy π̂ generated by
pessimistic value iteration satisfies

SubOpt
(
π̂, s; γ

)
≤ 2c

rmax

(1− γ)2

√
c†d3ζ/N, ∀s ∈ S
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Putting together

Theorem

We set
λ = 1, β = c · dVmax

√
ζ, ζ = log (4dN/(1− γ)ξ), (2)

Then with probability 1− ξ, the suboptimality bound of the policy π̂ generated by
pessimistic value iteration satisfies

SubOpt
(
π̂; γe

)
≤ 2c

(1− γ)2

√
c†d3ζ/N · rmax

+
γe − γ

(1− γ)(1− γe)
rmax.
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Pessimism Effect
An interesting equivalence

I Recall that discount factor can be
intepreted as the probability of dying.

I A lower γ means that the probability of
“dying” is higher.

I Does it sound like a kind of pessimism?
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Pessimism Effect
An interesting equivalence

The optimal value function with a lower discount factor is equivalent to the
pessimistic value function over a set of models. Formally, let

π∗Mε
∈ arg max

π∈Π
arg min
M∈Mε

VM,γ(π), (3)

where
Mε = {M |PM (·|s, a) = (1− ε)PM0(·|s, a) + εP (·)} ,

and P (·) is an arbitrary distribution over S, then we have

V ∗M0,(1−ε)γ = VM0,γ(π∗Mε
) + ∆, (4)

where ∆ is a constant.
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Proof of Equivalence

Proof.
Consider the following iteration

Vmin ← min
s′
V (s′),

Q(s, a)← r(s, a) + γ(1− ε)Es′∼P0V (s′) + γεVmin,

V (s) ← max
a

Q(s, a). (5)

It is easy to see that if the iteration in (5) converges, it is the value function for the
policies specified in Equation (3). Then it suffices to show that the solution to the
value iteration with discount factor (1− ε)γ is the same as the above stationary
solution up to a constant.
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Proof of Equivalence
Let Q(s, a) and V (s, a) be the value learned with discount factor (1− ε)γ, then we
have

Q(s, a) = r(s, a) + (1− ε)γEs′V (s′),

Let ∆ = γεmins[maxaQ(s, a)]/(1− γ) and Q̃(·, ·) = Q(·, ·) + ∆, Ṽ (·) = V (·) + ∆,
then we have

min
s

[max
a

Q̃(s, a)] =
(1− γ + γε)∆

γε
.

This leads to

Q̃(s, a)

=r(s, a) + γ(1− ε)Es′V (s′) + ∆

=r(s, a) + γ(1− ε)Es′ Ṽ (s′) + (1− γ + γε)∆

=r(s, a) + γ(1− ε)Es′ Ṽ (s′) + γεmin
s

[max
a

Q̃(s, a)].
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Pessimistic Effect

Theorem (Pessimistic Guarantees for a Lower γ)

Set γ = (1− ε)γe, where ε ≥ c1 log (c2Nd/ξ)
√
d/N . Then with probability 1− ξ,

Learning with a guidance discount factor γ yields a policy π̂ such that

SubOpt
(
π̂; γe

)
≤ c3

(1− γe)2

√
c‡d2ζ/N · rmax, (6)

where c‡ = supx∈Rd
x>Σπ∗x
x>Σρx

, Σρ = Eρ[φ(s, a)φ(s, a)>], Σπ∗ = Edπ∗ [φ(s, a)φ(s, a)>],

and c1 ∼ c4 are universal constants.
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Tabular Experiments
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Results on D4RL Tasks
Experimental results on noised D4RL tasks with various offline RL methods

Tasks BCQ BCQ (γ) TD3+BC TD3+BC (γ) COMBO COMBO (γ)

walker2d (0 noised traj) 59.6±2.7 51.5±3.6 62.0±3.2 52.2±1.1 26.1±3.2 65.5±1.7
walker2d (10 noised traj) 53.7±2.5 51.8±1.3 60.9.±1.2 45.7±4.2 27.9±2.3 63.1±1.6
walker2d (50 noised traj) 20.3±3.3 52.4±3.9 4.3±1.2 46.8±1.9 27.2±1.6 69.6±1.9
walker2d (100 noised traj) 18.6±1.9 52.1±2.2 2.1±0.2 46.6±1.3 13.3±1.1 70.7±2.3
hopper (0 noised traj) 52.8±2.1 40.3±2.5 52.5±1.8 51.0±0.9 1.5±0.1 53.5±3.2
hopper (10 noised traj) 47.9±2.1 41.0±2.7 15.4±0.5 47.9±0.3 1.2±0.1 56.5±2.5
hopper (50 noised traj) 12.7±3.5 44.1±1.9 3.0±0.2 47.0±0.5 1.0±0.1 48.6±4.2
hopper (100 noised traj) 1.0±0.1 41.6±0.6 1.5±0.4 46.3±0.7 1.3±0.1 52.3±1.7
halfcheetah (0 noised traj) 40.2±1.3 42.1±1.1 45.3±1.5 46.9±1.6 32.6±1.6 27.6±1.5
halfcheetah (10 noised traj) 39.5±0.3 40.2±3.3 45.7±0.4 47.3±1.6 32.3±2.8 29.7±2.7
halfcheetah (50 noised traj) 36.5±0.9 37.8±0.8 45.9±0.3 47.3±1.3 31.1±4.7 28.0±1.6
halfcheetah (100 noised traj) 35.4±1.1 36.4±1.7 47.3±1.0 46.1±1.8 30.0±1.9 29.3±0.6
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Results on D4RL Tasks
Experimental results on noised D4RL tasks with various noised trajectories
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Pessimism Effects

SAC-N random-v2 medium-v2 medium-expert-v2 expert-v2

Halfcheetah (γ=0.95) 30.0±1.6 65.1±0.9 51.4±2.2 82.7±0.8
Halfcheetah (γ=0.99) 26.6±1.5 48.7±1.3 26.7±1.1 80.2±0.6

random-v2 medium-v2 medium-expert-v2 expert-v2

Hopper (γ=0.95) 8.4±1.7 22.4±2.1 23.1±1.9 14.5±2.6
Hopper (γ=0.99) 14.5±3.5 7.1±2.0 15.4±1.4 2.3±0.3

Table 1: Results on Halfcheetah and Hopper tasks in D4RL. Q-ensemble size N is 2 in
Halfcheetah and N is 50 in Hopper.

Adroit pen-expert-v0 door-expert-v0 hammer-expert-v0

SAC-N (lower γ) 97.1±3.2 106.4±1.9 100.6±2.3
SAC-N (γ=0.99) 3.6±1.1 2.2±0.2 65.5±4.2

Table 2: Results on Adroit tasks in D4RL. Q-ensemble size N is 50 and γ = 0.95.
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Discount Factor versus Other Trade-Offs
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Summary

Discount factor plays an important role in offline RL

I Regularization Effect
I Similar to online scenario, but affected by data size, coverage ratio etc.
I More effective when data coverage is low and dataset is small

I Pessimistic Effect
I A lower discount factor is equivalent to model-based pessimism
I More effective when data coverage is sufficiently large
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