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Semantic Memory v.s. Episodic Memory
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Object Knowledge learned 
over many interactions

Memories for specific events 
you have experienced

Episodic MemorySemantic Memory

Apples
Fruit, Edible, 
Red, Sweet 
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Fast Learning v.s. Slow Learning
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Fast Learning v.s. Slow Learning
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Episodic Control

5

[Blundell, C. et al. Model-free episodic control. 2016]
[Botvinick et al, “Reinforcement Learning, Fast and Slow”, 2019] 
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Deep RL v.s. Episodic Control
 Conventional Deep RL
 Parametric 
 Value/Policy Learning
 Slow gradient-based updates of policy or value functions

 Episodic Control (Learning with memory model)
 Non-parametric
 Instance-based learning 
 Rapidly latch onto past successful strategies

6
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Flaws of vanilla episodic control
 No planning

7

No man ever steps in the same river twice.
Heraclitus

 Not generalizable
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Associative Memory

10

𝐺𝐺 = 𝑉𝑉,𝐸𝐸 ,𝑉𝑉 = {𝜙𝜙 𝑠𝑠 |𝑠𝑠 ∈ 𝑀𝑀},
𝐸𝐸 = {𝜙𝜙 𝑠𝑠 → 𝜙𝜙 𝑠𝑠′ | (𝑠𝑠, 𝑎𝑎, 𝑠𝑠𝑠) ∈ 𝑀𝑀}

 Graph Induced MDP

 Value propagation in induced MDP

𝑄𝑄𝒢𝒢 𝜙𝜙 𝑠𝑠 , 𝑎𝑎 ← 𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄𝒢𝒢 𝜙𝜙 𝑠𝑠′ , 𝑎𝑎′
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Generalizable Episodic Memory

11
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Connecting Experiences
 Implicit planning with memory

12

𝑅𝑅𝑡𝑡+1

𝑄𝑄𝜃𝜃(𝑠𝑠𝑡𝑡+1)
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Connecting Experiences
 Equivalently,

13

𝑅𝑅𝑡𝑡+1

𝑄𝑄𝜃𝜃(𝑠𝑠𝑡𝑡+1)
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Practical Issues
 Overestimation
 For a set of unbiased, independent estimators �𝑄𝑄ℎ = 𝑄𝑄ℎ + 𝜖𝜖ℎ, ℎ ∈ {1, … ,𝐻𝐻},

𝔼𝔼 max
ℎ

�𝑄𝑄ℎ ≥ max
ℎ

𝔼𝔼 �𝑄𝑄ℎ = max
ℎ

𝔼𝔼 𝑄𝑄ℎ

14

𝑄𝑄1 =
1.5,𝑝𝑝 =

1
2

0.5,𝑝𝑝 =
1
2

,𝑄𝑄2 =
1.6,𝑝𝑝 =

1
2

0.6,𝑝𝑝 =
1
2

max 𝔼𝔼[𝑄𝑄1 ,𝔼𝔼 𝑄𝑄2 ) = max 1,1.1 = 1.1

𝔼𝔼 max 𝑄𝑄1,𝑄𝑄2 =
1
2

× 1.6 +
1
4

× 1.5 +
1
4

× 0.6 = 1.325 > 1.1

e.g.
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Practical Issues
 Double Q-learning

 What double estimator guarantees:

𝔼𝔼 �𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≤ max
ℎ

𝔼𝔼 𝑄𝑄ℎ

15

�𝑄𝑄𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑄𝑄ℎ 1
∗
2 , ℎ(1)

∗ = argmax𝑄𝑄ℎ
(1)

�𝑄𝑄 = max
ℎ

𝑄𝑄 = 𝑄𝑄ℎ∗ , ℎ∗ = argmax Qℎ
0.5 1.2 1.0 0.3

0.6 1.1 1.2 0.4

𝑄𝑄(1)

𝑄𝑄(2)

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾max
𝑎𝑎

𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎)
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𝑟𝑟2

Twin back-propagation process

16

𝑉𝑉ℎ
(1) 4 3.5 3 2

𝑟𝑟4𝑟𝑟3𝑟𝑟1

𝑉𝑉ℎ
(2) 3.8 4 3 2

𝑄𝑄𝜃𝜃(𝑠𝑠1) 𝑄𝑄𝜃𝜃(𝑠𝑠2) 𝑄𝑄𝜃𝜃(𝑠𝑠3) 𝑄𝑄𝜃𝜃(𝑠𝑠4)

ℎ(2)
∗ = argmax𝑉𝑉ℎ

(2) = 2 𝑅𝑅(1) = 𝑉𝑉ℎ(2)
∗

(1) = 3.5

ℎ(1)
∗ = argmax𝑉𝑉ℎ

(1) = 1 𝑅𝑅(2) = 𝑉𝑉ℎ(1)
∗

(2) = 3.8
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 Twin back-propagation does not overestimate

Twin back-propagation process

19
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Conservative Estimation

 Clipped Double-Q Learning

 Asymmetric Loss

20

𝑄𝑄 𝑠𝑠, 𝑎𝑎 = min 𝑄𝑄𝐴𝐴 𝑠𝑠,𝑎𝑎 ,𝑄𝑄𝐵𝐵 𝑠𝑠,𝑎𝑎

ℒ 𝜃𝜃 = 𝔼𝔼[ 𝛿𝛿𝑡𝑡 +
2 + 𝛼𝛼 −𝛿𝛿𝑡𝑡 +

2 ]
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Conservative Estimation
 Conservative estimation as expectile

 Quantile: minimizer of quantile regression loss

𝑄𝑄𝑄𝑄 𝑞𝑞; 𝜇𝜇, 𝜏𝜏 = 𝔼𝔼𝑍𝑍∼𝜇𝜇 𝜏𝜏𝟙𝟙𝜏𝜏>𝑞𝑞 + 1 − 𝜏𝜏 𝟙𝟙𝜏𝜏≤𝑞𝑞 |𝑍𝑍 − 𝑞𝑞|

 Expectile: minimizer of expectile regression loss

𝐸𝐸𝑅𝑅 𝑞𝑞;𝜇𝜇, 𝜏𝜏 = 𝔼𝔼𝑍𝑍∼𝜇𝜇 𝜏𝜏𝟙𝟙𝜏𝜏>𝑞𝑞 + 1 − 𝜏𝜏 𝟙𝟙𝜏𝜏≤𝑞𝑞 𝑍𝑍 − 𝑞𝑞 2

21
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Conservative Estimation
 Conservative estimation as expectile

22

[Rowland et al. 2019]
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Convergence Analysis

23
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Practical Issues
 Stochastic Environments

24

𝑟𝑟 = 2

𝑟𝑟 = −2

𝑟𝑟 = 1

𝑎𝑎 = 0

𝑎𝑎 = 1,𝑝𝑝 =
1
2

𝑎𝑎 = 1,𝑝𝑝 =
1
2
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Practical Issues
 Stochastic Environments

25

𝑟𝑟 = 2

𝑟𝑟 = −2

Environment Randomness makes 
planning within memory fail

But to what extent?

𝑟𝑟 = 1

𝑎𝑎 = 0

𝑎𝑎 = 1,𝑝𝑝 =
1
2

𝑎𝑎 = 1,𝑝𝑝 =
1
2
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Practical Issues
 Stochastic Environments
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𝑟𝑟 = 2

𝑟𝑟 = −2

𝑟𝑟 = 1

𝑎𝑎 = 0

𝑎𝑎 = 1,𝑝𝑝 =
1
2

𝑎𝑎 = 1,𝑝𝑝 =
1
2
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Practical Issues
 Stochastic Environments
 For a nearly-deterministic environment with factor 𝜇𝜇, GEM’s performance 

can be bounded by 

𝑉𝑉𝜋𝜋 𝑠𝑠 ≥ 𝑉𝑉∗ 𝑠𝑠 −
2𝜇𝜇

1 − 𝛾𝛾

27
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Off-Policy Trade-offs

 Off-Policy evaluation for 𝜋𝜋 with behavior 𝜇𝜇
 Consider a general operator 𝒯𝒯 and assume it has a fix point �𝑄𝑄
 Concentration rate of the operator

Γ 𝒯𝒯 = sup
𝑄𝑄1≠𝑄𝑄2

𝒯𝒯 𝑄𝑄1 − 𝑄𝑄2 ∞

𝑄𝑄1 − 𝑄𝑄2 ∞

 the variance and bias of the operator
𝔹𝔹 𝒯𝒯 = �𝑄𝑄 − 𝑄𝑄𝜋𝜋 2,𝕍𝕍 𝒯𝒯 = 𝔼𝔼𝜇𝜇 ‖ �𝒯𝒯𝑄𝑄 − 𝒯𝒯𝑄𝑄‖22

28
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Off-Policy Trade-offs

 An information-theoretic lower bound [Rowland et al.]:

sup
𝑀𝑀∈ℳ

𝔹𝔹 𝒯𝒯 + 𝕍𝕍 𝒯𝒯 +
2𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
1 − 𝛾𝛾 Γ 𝒯𝒯 ≥ 𝐼𝐼(ℳ)

29
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Experiments
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Experiments

31



32Machine Intelligence Group, IIIS, Tsinghua University

Experiments
 Ablation study for overestimation
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Experiments
 Ablation study for overestimation
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Summary
 Episodic memory-based method offers a way for sample-efficient 

learning
 GEM uses a neural network for natural generalization of discrete 

memory tables
 TBP reduces overestimation error in planning
 GEM convergences to optimal in deterministic environments and 

offers trade-offs in stochastic ones

34



35Machine Intelligence Group, IIIS, Tsinghua University

[1] Tsividis, Pedro A., et al. "Human learning in Atari." (2017).
[2] Gamrian, Shani, and Yoav Goldberg. "Transfer learning for related reinforcement learning tasks via image-
to-image translation." International Conference on Machine Learning. PMLR, 2019.
[3] Blundell, Charles, et al. "Model-free episodic control." arXiv preprint arXiv:1606.04460 (2016).
[4] Hu, Hao, et al. "Generalizable Episodic Memory for Deep Reinforcement Learning." arXiv preprint 
arXiv:2103.06469 (2021).
[5] Zhang, Jin, et al. "MetaCURE: Meta Reinforcement Learning with Empowerment-Driven Exploration." arXiv
preprint arXiv:2006.08170 (2020).
[6] Hafner, Danijar, et al. "Dream to control: Learning behaviors by latent imagination." arXiv preprint 
arXiv:1912.01603 (2019).
[7] Rowland M, Dadashi R, Kumar S, et al. Statistics and samples in distributional reinforcement 
learning[C]//International Conference on Machine Learning. PMLR, 2019: 5528-5536.
[8] Tang Y. Self-imitation learning via generalized lower bound q-learning[J]. arXiv preprint arXiv:2006.07442, 
2020.
[9] David Silver. Tutorial: Deep Reinforcement Learning. https://icml.cc/2016/tutorials/deep_rl_tutorial.pdf

35

References

https://icml.cc/2016/tutorials/deep_rl_tutorial.pdf


Thanks!

Machine Intelligence Group



37Machine Intelligence Group, IIIS, Tsinghua University

Additional Comparison

37
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