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Data-Driven Reinforcement Learning

Value-Based Episodic Memory [ICLR’22]
[ Offline RL ] The Role of y in Offline RL [ICML’22]
Hierarchical Offline RL [AAAI’23]

Provable Unsupervised Data .
Sharing [ICLR’ 23] Unsupervised

Unsupervised Behavior Offline RL
Extraction [NeurlPS’23]

Reason for future, Act for Now [Under Review] [ RL with LLMs ]
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Why Offline Reinforcement Learning?

= Data is cheap, exploration is expensive
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What is Offline Reinforcement Learning?

= Decoupling learning and exploration

(a) online reinforcement learning  (b) off-policy reinforcement learning (c) offline reinforcement learning
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The Key Ingredient: Pessimism

= Avoid bad decision-making Pm:L‘ L | l | ‘ . ’Aa
= Select the most “not-bad” action T“kn . ’ = g

ulti-Armed

argmax, u(a) — ko(a) W % ai:dnsm.;e
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Offline Reinforcement Learning

[ Behavior ] [Ofﬂine] [ Off-Policy ] [On-PoIicy]

»>

Cloning

Conservatism Optimality

The Role of y in Offline RL [ICML’22]

@ Machine Intelligence Group, I1IS, Tsinghua University = ©



Value-Based Episodic Memory [ICLR'22]

= Bellman expectation operator for Q™

TTV(s) = E gengls) [r(s,a) +yV(s")]
si~p(:|s,a)
= Bellman optimality operator for Q*

TV(s) = maaX IIE':sr~p(-|s,a) [r(s,a) +yV(s')]

@ Machine Intelligence Group, IlIS, Tsinghua University = 7



Expectiles

= A similar statistic as quantile

A
= Quantile: minimizer of quantile regression loss 1 Expectiles PriZ > a,)
EO _
. — — — EO+0O [ __ L
QR(q; 1, 7) = Ezoy[(tlesq + (1 — Dligg)1Z — q] Bl 21" PrZ <4}
E(Z-e] ~ Quantiles
» Expectile: minimizer of expectile regression loss Pr{Z < 4.}
5 Pr{Z < q:} + Pr{Z > ¢;}
ER(q; 1, 7) = Ez-y[(tlng + (1 — D1;4)(Z — ¢)?] Fy | =m=r
0 €r IqT R
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Expectile V-learning

= Bellman expectile operator T.*
(T (s) = argmin Eqy[7[8(s, )] + (1 = D[-6(s, @)]3],
where §(s,a) = Eg, [r(s,a) + yV(s") — v],[-]+ = max{0,-}.

= 7 =1/2 : Bellman expectation operator
(79,) V(5) = Eqpulr(s,a) + vV (s")]

= T —> 17 : Bellman optimality operator
lim (TT”)V(S) = m;lxr(s, a) + yV(s")

-1~
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Trade-offs with different t

T achieve a trade-off between generalization and conservatism

T IV =Vl
0.5 | 3.61+0.24
0.6 | 2.844+0.22
0.7 | 2.10+0.22
0.8 | 1.29+0.24
0.9 | 0.40+0.15
0.95 | 1.0740.18
0.98 | 2.0240.18

300

200 4

100

Mean State Value

Evaluation error on a random MDP with
~1001 random noise applied on the operator
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Experiments

= Evaluation on D4RL tasks

Type Env VEM(Ours) | VEM(7=0.5) BAIL BCQ | CQL | AWR
fixed umaze 87.5+1.1 85.0+1.5 62.5+23 789 | 740 | 56.0
play medium 78.0+3.1 71.0£2.5 400X 15.0 | 0.0 61.2 0.0
play large 57.0+£5.0 45.0+2.5 23.04+5.0 6.7 11.8 0.0
diverse umaze 78.0+ 1.1 75.0£5.0 75.0£1.0 550 | 84.0 | 703
diverse medium 77.0+2.2 60.0£5.0 50.0£10.0 0.0 53.7 0.0
diverse large 58.0 = 2.1 48.0+2.7 30.0£5.0 2.2 14.9 0.0
human door 11.2+4.2 6.9+1.1 0.0+0.1 -0.0 9.1 04
human hammer 3.6+1.0 2.54+1.0 0.040.1 0.5 2.1 1.2
human relocate 1.3+0.2 0.0+0.0 0.0+0.1 0.5 2.1 -0.0
human pen 65.0+2.1 55.2+3.1 32,5415 689 | 558 | 123
cloned door 3.6+0.3 0.0+0.0 0.0+0.1 0.0 3.5 0.0
cloned hammer 2.7+1.5 0.5+0.1 0.1£0.1 0.4 5.7 04
cloned pen 48.7+3.2 27.842.2 46.5+3.5 440 | 40.3 | 28.0
expert door 105.5+0.2 104.8+0.2 104.74+0.3 99.0 - 102.9
expert hammer 128.3+1.1 102.3+5.6 123.5+3.1 | 1149 - 39.0
expert relocate 109.8-£0.2 101.0£1.5 94.442.7 41.6 - 91.5
expert pen 111.7+£2.6 115.2+1.3 126.7+0.3 114.9 - 111.0
random walker2d 6.2+4.7 6.24+4.7 3.9+25 4.9 7.0 1.5
random hopper 11.1+1.0 10.8x1.2 9.8£0.1 106 | 108 | 10.2
random | halfcheetah 16.4+3.6 2.6+2.1 0.0£0.1 2.2 354 2.5
medium | walker2d 74.0+1.2 16.6+0.1 73.0+1.0 53.1 | 79.2 17.4
medium hopper 56.64+2.3 56.6+2.3 58.2+1.0 545 | 580 | 35.9
medium | halfcheetah 47.4+0.2 45.3+0.2 42.6+1.2 40.7 | 444 | 374
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Experiments

= Evaluation on D4RL tasks

.

r0.0
r—0.2
r—0.4
% —0.6

-0.8

(a) Large (b) Medium (c) Umaze

Figure 4: Visualization of the value estimation in various AntMaze tasks. Darker colors correspond
to the higher value estimation. Each map has several terminals ( ) and one of which is
reached by the agent (the light red star). The red line is the trajectory of the ant.
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Flow to control [AAAI'23]

Value Propagation

f 1
1
1
Hierarchical I !
. |
Control :O Similar States \ -
| .
I
| Temporal Abstraction |
: | 2.0
7 (O Over-estimation Point ;
\-\ ______________ - i
1.0
| One-level
Control P
0.0
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Error Decomposition

Shigh e

Stow e
A *
i/ | U

SubOpt(7s) = J (7s) — J (Fe) + J(m5) — T (Fs) + J (x*) — T ().

N -~ \ v

' ~

~
Primitive Error Offline Error Representation Error
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Error Decomposition

Theorem 1. Under the condition in Lemma 1, 2 and 3, the -

suboptimality of a policy learned in the hyper-MDP with Al-
gorithm 2 satisfies

20T max ctd3¢
(I-yA-79)V N

vye(e + 1)r
(1-7( —m;i) (e +€0); I S

with high probability 1 — 20.

SubOpt(7y) <
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Flow-based Generative Models

GAN: minimax the
classification error loss.

VAE: maximize ELBO.

Flow-based
generative models:
minimize the negative

log-likelihood

Discriminator Generator /
> z >
D(x) G(z) x
7 Decoder > %/
po(x|z)
| Flow N | Inverse |y
> > > _ X
f(x) f~(=z)
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Flow-based Generative Models

Flow-based
Flow Inverse ,

generative models:
minimize the negative f(x) f1(z)

log-likelihood
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Flow-based Generative Models

Affine Coupling Layer
T TEEEEEEEEEEEEEEEEE T ~
! \\
a |! . 21 Z \
I
4: ] . <+ + + o -:— .
1 : E
1 7 :
ag |! Zq Zd !
] r r
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O ®— : : —:W :
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Qc ‘\ Zc Zc !
~ J’

e = e e

gigis Fully Connected Network ~ — encode
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Million Steps

(c¢) Performance

@ Machine Intelligence Group, 11IS, Tsinghua University 18



Experiments

Type Env IQL+LPD | IQL | CQL | OAMPI | TD3+BC | EMAQ
partial kitchen 749+1.17 | 463 | 498 | 35033 | 7.5£1.3 | 74.6+0.6
mixed kitchen 69.2+1.91 | 51.0 | 51.0 | 47.5+4.1 1.54+0.2 | 70.84+:2.3
complete | kitchen 75.0+0.7 7 | 62.5 | 438 | 10.0=1.9 | 23.5+2.5 | 36.9+3.7
fixed Antmaze-umaze 93.0+1.37 | 87.5 | 740 | 64.3+4.6 | 78.6+4.4 | 91.0+4.6
play Antmaze-medium | 74.7+2.27 | 71.2 | 10.6 | 0.0£0.0 | 33.6+£2.2 | 0.0+0.0
play Antmaze-large 56.2+3.6 7T | 39.6 | 02 0.3+0.1 | 214433 | 0.0+0.0
diverse Antmaze-umaze 81.6+2.01 | 62.2 | 84.0 | 60.73.9 | 71.44+4.6 | 94.0+24
diverse Antmaze-medium | 83.7+1.6 7 | 70.0 | 3.0 0.0+0.0 | 34.74+2.5 | 0.0+0.0
diverse Antmaze-large 52.8+1.117 | 475 | 0.0 0.0+0.0 | 25.9+2.7 | 0.0+0.0
human door 151+2517 | 4.3 9.9 2.8+0.1 0.0+0.0 -
human hammer 3.3+0.7 1 14 44 3.9+0.2 0.9+0.1 -
human pen 63.1£1.6 | 71.5 | 37.5 | 54.6=4.6 | 39.0L£3.6 -
cloned door 8.1+1.0 7 1.6 0.4 0.4+0.1 0.0+£0.0 | 0.2+0.3
cloned hammer 2.1+0.2 2.1 2.1 2.1+0.1 0.3+0.1 1.0+0.7
cloned pen 65.8+2.71 | 37.3 | 39.2 | 60.0+5.2 | 25.1+1.9 | 27.94+3.7
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Unsupervised Offline RL

Provable Unsupervised Data
Sharing [ICLR’ 23]

Unsupervised Behavior
Extraction [NeurlPS’23]

Reward-free Offline RL

Action-free Offllne RL (Videos) Passive RL with State-Centric

Planning [Under Review]
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Unsupervised Offline RL

Provable Unsupervised Data
Sharing [ICLR’ 23]

Unsupervised Behavior
Extraction [NeurlPS’23]

Reward-free Offline RL

Action-free Offllne RL (Videos) Passive RL with State-Centric

Planning [Under Review]
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Motivation: Can we bring in even more data?

= Abundant reward-free data, containing useful human
behaviors

= How to extract them effectively from offline data?
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Motivation

= Human conduct a behavior based on some intentions — A
reward function, but we don’t know them

= We can learn similar behaviors by randomly sampling
from the distribution of intentions

= |n fact, we can use random intentions

= T
5 =Y T Y

e

TANN -
L%y
WA

N !
L A W
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Random Neural Networks as Priors

-~ - ~
y Phase 1: Offline Behavior Extraction A ;7 Phase 2: Online Policy Reuse A
( Random Intentions 1 1
! . . ) Behaviors : I Policy I
I Offline RL Algorithm S I Expansion '
1 g, I
I ) I |
I I |
I | |
I > [ ""] \ )|
I |
' offline data |I 1
1 |
\ _nﬂn I 1
N /N /
~ - ~ -~

Figure 2: The framework of UBER. The procedure consists of two phases. In the first phase, we
extract diverse and useful behaviors from the offline dataset with random rewards. In the second
phase, we reuse previous behavior to accelerate online learning.
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Policy Composition

= Policy set Il = |ng, mp]

o a_ eXp(Qcp(Saai)—/Oé) ;
Utlllty Py li] = Zj exp(qu(Saaj)/o“), viell K]

= Composition

ﬁ-(a‘s) — [5aww5(s): 5a,rv7r9(s)}w: w ~ Py
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UBER: Unsupervised Behavior Extraction

- T TEEEEEEEEEEEEE_E_—__——— ~ - ~
y Phase 1: Offline Behavior Extraction A ;7 Phase 2: Online Policy Reuse A
[ Random Intentions | 1
! . . ) Behaviors : I Policy I
I Offline RL Algorithm 1 I Expansion |
! g, !
I ) I 1
1 I 1
I | |
I > [ ""] \ )|
| |
! offline data |I 1

| |
\ -nﬂn I \ ]
\ LAERN /
-~ e ~ -~

Figure 2: The framework of UBER. The procedure consists of two phases. In the first phase, we
extract diverse and useful behaviors from the offline dataset with random rewards. In the second
phase, we reuse previous behavior to accelerate online learning.
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Experiments: Diversity

hopper-medium walker2d-medium

0.0051 == BC
] I BC
0.006 o UBER === UBER
B DATASET I DATASET
0.005 0.0041
> >
U i U
© 0.004 € 0.003
e -}
3 0.003 o
i g 0.002
Y- 0.002
0.0011
0.001 1
0.000 - 0.000
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 3500 4000

Returns Returns
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Experiments: Diversity

walker2d-medium-expert antmaze-medium-diverse
1.0 = BC
I BC
0.0035 mmm UBER wsm UBER
Imm DATASET W DATASET
0.00301 0.8
?o.oozsf LC>;O ]
D o
g_c.oozo- v
(on
V 0.0015 @ 0.4
- L
0.0010+ 0.2
0.0005 I I I
0.01 - oa | u
0.0000- . . . . . :
0 1000 2000 3000 4000 5000 0.0 0.2 0.4 0.6 0.8 1.0
Returns Retiirn
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Experiments: Usefulness

walker2d-expert

hopper-expert

—— UBER
— BC
4000| — onLINE
3000
3200
£ 2400 c
:
o % 2400
g1800 o
:
) >
1600
Z 1200 <
600 800
8% o o 55 5E S0 8.0 05 1.0 2.0 25 3.0

1.5 _ 15
Time steps(1e5) Time steps(1e5)
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Experiments: Usefulness

walker2d-medium-expert

i 4000
hopper-medium-expert — UBRR
—— UBER —— BC
— BC —— ONLINE
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3000 3200
= 2400 £
o =}
% E 2400
o
o 1800 g
g ©
e g 1600
Z 1200 <
800
600
/
8.0 0.5 0 1.5 2.0 2.5 8o 05 1.0 15 2.0 25 3.0
Time steps(1e5) Time steps(1le5)
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Multi-task: Meta-world

= Source: Push, Reach, Pick-place

= Target: Hammer, Peg-Insert-Side, Push-Wall, Pick-Place-
Wall, Push-Back, Shelf-Place
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pick-place-wall-v2-expert

< 3000
&E —— UBER (Ours)
" 2000 —— BC-PEX
2 —— TD3
21000
0 M/V\
0 1 2 3
Million Steps
pick-place-wall-v2-replay
c 30001
§ —— UBER (Ours)
Pl —— BCPEX
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21000
0- T T T T
0 1 2 3
Million Steps
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Results

shelf-place-v2-expert
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Theoretical Analysis: Coverage

Theorem 4.3. Assume the reward function r(s,a) admits a RKHS represention (s, a) with

|4(s,a)||cc < & almost surely. Then with N = cov/ M log(18v/ M k?/6) random reward func-
tions {r; };_,, the linear combination of the set of random reward functions (s, a) can approximate
the true reward function with error

E(s.a)~p[T(s,0) = 7(s,a)]* < 1 log*(18/8)/V M,

with probability 1 — 6, where M is the size of the offline dataset D, cq and ¢y are universal constants
and p is the distribution that generates the offline dataset D.
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RL with LLMs: Autonomous Agents

Agent
! Your attempted answers ; Learning depth-3 tree-search Planning
! and feedbacks are: —_ »@ : 3
— — — = T = —Mexamples} H 1+
memory buffer P ¥ e emmcemccmaeae memmmmeeeme———— T e aea———
Pl i :
S0 Uy S15 7o P [ Y '
prior ! posterior | tbreadth_zh
v 7 T update f J ree-searc E
Ste—15 Q15 S5 Ty 1 i V '« “reason
a o -=* for future”
I - - _— / discarded
append

“ "
y - act for now
810 Qs Syr 1> Ty ¥

If—-Switch 1< r(s,a), 5., ~ P(-|s,a) ~Environment
Sp Qi Sy 15 1 <

Reason for future, Act for Now [Under Review]
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RL with LLMs: Planning

Input | thought |

Majonty vote

(a) Input-Output  (c) Chain of Thought  (c) Self Consistency
Prompting (I0)  Prompting (CoT) with CoT (CoT-SC)

(d) Tree of Thoughts (ToT)
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,—[ 1. Decision making ]

(a) Task

RL with LLMs: Learning

You are in the middle of a room
[...] Task: clean some pan and put
it in countertop.

[ 2. Programming ]

Task: You are given a list of two
strings [...] of open ' (' or close
') ' parentheses only [...]

-

Task: What profession does John
Lanchester and ARlan Dean Foster
have in common?

[ 3. Reasoning

l

(b)
Trajectory

[...]

Action:take panl from stoveburnerl
Obs:Nothing happens. [...]
Action:clean panl with sinkbasinl
Obs:Nothing happens. [...]

def match parens(lst):

if sl.count (' (') +
s2.count ('('") == sl.count(')"') +
s2.count (') "): [...]

return 'No'

Think: [...] novelist, journalist,
critic [...] novelist,
screenwriter [...] common is

novelist and screenwriter.
Action: “novelist, screenwriter”

(c)
|

Evaluation

Rule/LM Heuristic:
Hallucination.

Self-generated unit tests fail:
assert match_parens(...)

Environment Binary Reward:
0

J

(internal / external)

(d)
Reflection

[...] tried to pick up the pan in
stoveburner 1 [...] but the pan
was not in stoveburner 1. [...]

[...] wrong because it only checks
if the total count of open and
close parentheses is equal [...]
order of the parentheses [...]

[...] failed because I incorrectly )
assumed that they both had the
same multiple professions [...]
accurately identifying their

|_professions.

l

(e) Next
Trajectory

[...] Action: take pan 1 from
stoveburner 2

[...] Obs: You put the pan 1 in
countertop 1.

[...]
return 'Yes' if check(Sl) or
check (S2) else 'No'

Think: [...] So the profession
John Lanchester and Alan Dean
Foster have in common is novelist.

Action: “novelist”
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Game of 24

o T Fi52107T ! ;
e R @ """" > (left: 8 10 11)
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- b e N
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oo : R TSI TTTY Uy TRy o
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RAFA Algorithm

Algorithm 1 Reason for future, act for now (RAFA): The LLM version.

1: input: An LLM learner-planner LLM-LR-PL, which aims at generating an optimal trajectory given an
initial state and returns the initial action (e.g., Algorithm 2), and a switching condition If-Switch.

2: initialization: Sample the initial state so ~ p, set t = 0, and initialize the memory buffer Dy = &@.

3: for k=0,1,..., do

4 Set tj + t.

5 repeat

6: Learn and plan given memory Dy, to get action a; <~ LLM-LR-PL(D;,, s¢).(“reason for future”)
7 Execute action a; to receive reward r; and state s;., from environment. (“act for now”)
8 Update memory Dy, < D, U {(s4, @, Si41,70) }-

9 Set t ¢+ 1.

10:  until If-Switch(D,) is True. (the switching condition is satisfied)
11: end for

Theorem 4.4 (Bayesian Regret). Under Assumption 4.1, the Bayesian regret of RAFA satisfies
. i (0)-ENHy — H -E[Hy — H-
R(T) = O(’Y SUpyi < tfl(_) [V Ho 7] T + - ZCS v - E[Ho T])

5 TS PR g -
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Experiments

= Game of 24

100 Game of 24, gpt-4 50 Game of 24, gpt-3.5-turbo
. e RAFA(b = 1)
QO —n — — ._‘.,-.’;_.: 4()| e RAFA(b = 2) /_
< o= RAFA(b=1) i | == Reflexion
E 60 —— RAFA(b=2) 230 ToT(b = 1,20 trials) e
/. e Reflexion = w1 ToT(b = 2,20 trials)
% 40 ToT(b = 1,20 trials) ¢
E — ToT(b=2,20 trials) R
20 —m
0=3 G 9 o 15 18 l 5 18
Step Step
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Experiments

= ALFWorld

Goal: heat an egg and [ N ; s : ; I N J v
put it on dining table I Go to i, ,ifou see a fork 1; i Goto : iYousesea : . vesh—o |
P : " and a cup 1. ! ted 1. : N :

You see a P : @ : | b 1 '
cabinet 1, a ‘ P LI N P
countertop 1, a j iModeI LLM§ You see a bread: Egg 1 is ECritic el i, 1
diningtable 1, ] P 1 and an egg 1. : = '  Vem)=3
and a drawer 1. ! @ ‘. 2 & ! ;
P h - : © i Take cup 1 i ' ; T ;

P : . il : | - , i ,

Go to ipi GO o ... » fou see a cd Pt from ke SR LIS 4 % yrshy=o !
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ALFWorld, gpt-3 for RAFA
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Pick Clean Heat Cool Examine  PickTwo Total
BUTLER 46.00 39.00 74.00 100.00 22.00 24.00 37.00
ReAct 66.67 41.94 91.03 80.95 55.56 35.29 61.94
AdaPlanner | 100.00 96.77 95.65 100.00 100.00 47.06 91.79
Reflexion 100.00 90.32 82.61 90.48 100.00 94.12 92.54
RAFA 100.00 96.77 100.00 100.00 100.00 100.00 99.25
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