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Offline Reinforcement Learning

Offline RL (He and Hou, 2020; Kumar et al., 2020) has been popular in recent years,
since it can

▶ Reduce the exploration constant

▶ Facilitate data reuse
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Offline-to-Online RL

However...

▶ Offline agents are still suboptimal

▶ Offline agents generalize poorly
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Offline-to-Online RL

A natural paradigm:
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The exploration-exploitation dilemma in off-to-on RL

▶ offline algorithms learn slowly due to a lack of
exploration (green).

▶ online algorithms suffer from a sudden drop
due to radical exploration (orange).
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The Unsolvable Dilemma

Consider the two following bandits:
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A Bayesian Point of View
Preliminaries

Let Hk,h = (s1,1, a1,1, r1,1, . . . , sk,h−1, ak,h−1, rk,h−1, sk,h) be all the history up to step
h of episode k. We use subscript k, h to indicate quantities conditioned on Hk,h, i.e.
Pk,h = P(·|Hk,h),Ek,h[·] = E[·|Hk,h]. The filtered mutual information is defined as

Ik,h(X;Y ) = DKL(Pk,h(X,Y )||Pk,h(X)Pk,h(Y )),

which is a random variable of Hk,h. For a horizon dependent quantity fk,h, we define

Ek[fk] =
∑H

h=1 Ek,h[fk,h] and similarly for Pk.
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A Bayesian Point of View
Preliminaries

The information ratio (Russo and Van Roy, 2016) as the ratio between the expected
single step regret and the expected reduction in entropy of the unknown parameter
as follows

Definition (Information Ratio (Russo and Van Roy, 2016))

The information ratio Γk,h given history Hk,h is the minimum value Γ such that the
following event

|Qwh
(s, a)− EQwh

(s, a)| ≤ Γ

2

√
Ik,h(wh; rh, sh+1 | s, a), (1)

holds for all h ∈ [H], s ∈ S, a ∈ A with probability 1− δ/2.
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A Bayesian Point of View

Theorem

Then the per-episode regret of Thompson Sampling and UCB agents satisfies

Ek[∆k] ≤
H∑

h=1

Γk,h

√
Ik,h(wh; ak,h, rk,h, sk,h+1) + 2δH2, (2)

where ak,h ∼ πk,h. Similarly, the per-episode regret of Thompson Sampling and LCB
agents satisfies

Ek[∆k] ≤
H∑

h=1

Γk,h

√
Ik,h(wh; a

∗
h, rk,h, sk,h+1) + 2δH2, (3)

where a∗h ∼ π∗
h.
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Figure 1: Theoretical upper bound in Theorem 0.2 and experiment results on Bernoulli
bandits. The performance of a Bayesian approach matches the performance of LCB at an
early stage by using prior knowledge in the dataset properly and matches the performance of
UCB in the run by allowing efficient exploration. Therefore, a realistic Bayesian agent
performs better than both optimistic UCB and pessimistic LCB agents.
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Setting Doctrine Algorithm

Online Learning Optimism TS, UCB

Offline Learning Pessimism TS, LCB

Offline-to-online Realism TS

Table 1: A taxonomy of the doctrines in different settings of reinforcement learning. a
Bayesian approach like TS is generally suitable for online, offline and offline-to-online
settings, and is the only one that works in the offline-to-online setting.
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Algorithm Design

Algorithm 1 BOORL, Offline Phase

1: Require: Ensemble size N , offline dataset Doff , masking distribution M
2: Initialize parameters of N independent TD3+BC agents {Qθi , πϕi

}Ni=1

3: for i = 1, · · · , N do
4: Sample bootstrap mask m ∼ M (e.g., Bernoulli distribution)
5: Add m to Doff as Doff

i

6: for each training iteration do
7: Sample a random minibatch {τj}Bj=1 ∼ Doff

i

8: Calculate Loffline
critic (θi) and update θi

9: Calculate Loffline
actor (ϕi) and update ϕi

10: end for
11: end for
12: Return {Qθi , πϕi

}Ni=1
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Algorithm Design

Algorithm 2 BOORL, Online Phase

1: Require: {Qθi , πϕi
}Ni=1, offline dataset Doff , empty online replay buffer Don

2: for each iteration do
3: for step t = 1, · · · , T do

4: Construct distribution pi =
exp(Qθi

(st,πϕi
(st)))∑

j exp(Qθj
(st,πϕj

(st)))

5: Pick an policy to act at ∼ πϕn(· | st) by sampling index n based on pi
6: Store transition (st, at, rt, st+1) in Don

7: Sample minibatch B from Doff and Don

8: for i = 1, · · · , N do
9: Calculate Lonline

critic (θi), L
online
actor (ϕi) with minibatch B and update θi, ϕi

10: end for
11: end for
12: end for
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Experimental Results

Figure 2: Experiments between several baselines and BOORL within 0.2M time steps. The
reference line is the performance of TD3+BC. The experimental results are averaged with
five random seeds.
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Experimental Results

Task ODT PEX Cal-QL BOORL RLPD

hopper-rand 10.1→30.8 7.6→10.1 9.3→11.9 8.8→75.7 84.1
hopper-med 66.9→97.5 63.8→78.6 75.8→100.6 61.9→109.8 107.3
hopper-exp 108.1→110.7 102.4→96.6 94.8→110.3 111.5→109.2 100.4

cheetah-rand 1.1→2.2 9.6→61.2 22.0→45.1 10.7→97.7 63.0
cheetah-med 42.7→42.1 47.3→67.8 48.0→72.3 47.9→98.7 90.5
cheetah-exp 87.3→94.3 90.5→95.5 64.5→92.1 97.5→98.4 93.2

antmaze-u 56.6→83.5 81.6→100.0 78.5→100.0 81.7→100.0 95.6
antmaze-m-p 0.0→0.0 68.6→90.8 59.4→91.9 50.6→100.0 96.3
antmaze-l-p 0.0→0.0 49.9→68.2 24.2→55.9 61.0→75.8 81.6

δsum (0.2M) 146.0 326.8 392.0 698.1 -
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Experimental Results

Task Type BOORL Bayesian δ Hybrid RL δ

Hopper
random 75.7±1.3 85.4±3.3 -9.7 75.2±3.9 0.5
medium 109.8±1.6 109.6±1.5 0.2 91.4±1.2 18.4

medium-replay 111.1±0.3 110.6±0.6 0.5 103.5±2.7 7.6

Walker2d
random 93.6±4.4 92.4±4.7 1.2 15.4±0.8 78.2
medium 107.7±0.5 96.5±3.5 11.2 86.4±0.4 21.3

medium-replay 114.4±0.9 103.7±2.1 10.7 99.7±2.4 14.7

Halfcheetah
random 97.7±1.1 94.5±4.2 3.2 85.2±0.5 12.5
medium 98.7±0.3 97.7±0.5 1.0 80.3±0.2 18.4

medium-replay 91.5±0.9 90.5±0.5 1.0 84.8±1.0 6.7

Table 2: Ablation results on Mujoco tasks with the normalized score metric.
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